Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЦТ — математика
Вариант № 45898
1.  
i

Опре­де­ли­те наи­мень­шее на­ту­раль­ное число, крат­ное 2, ко­то­рое при де­ле­нии на 15 с остат­ком дает не­пол­ное част­ное, рав­ное 3.

1) 44
2) 50
3) 48
4) 18
5) 46
2.  
i

Вы­ра­зи­те 737 см 8 мм в мет­рах с точ­но­стью до сотых.

1) 0,74 м
2) 7,37 м
3) 7,378 м
4) 7,38 м
5) 73,78 м
3.  
i

Сумма всех на­ту­раль­ных де­ли­те­лей числа 28 равна:

1) 55
2) 11
3) 9
4) 27
5) 56
4.  
i

Зна­че­ние вы­ра­же­ния 3 в сте­пе­ни левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка : левая круг­лая скоб­ка целая часть: 5, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 5 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 3 пра­вая круг­лая скоб­ка равно:

1)  дробь: чис­ли­тель: 27, зна­ме­на­тель: 125 конец дроби
2)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби
3)  дробь: чис­ли­тель: 125, зна­ме­на­тель: 81 конец дроби
4)  дробь: чис­ли­тель: 81, зна­ме­на­тель: 125 конец дроби
5)  дробь: чис­ли­тель: 125, зна­ме­на­тель: 243 конец дроби
5.  
i

Если 9x минус 24=0, то 18x минус 31 равно:

1) 13
2) −17
3) 17
4) 21
5) −19
6.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 3 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка : левая круг­лая скоб­ка 0,75 пра­вая круг­лая скоб­ка в кубе плюс 3: левая круг­лая скоб­ка 1,5 пра­вая круг­лая скоб­ка в кубе .

1)  целая часть: 1, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 3
2)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 20 конец дроби
3)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби
4)  целая часть: 2, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 9
5)  целая часть: 2, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 3
7.  
i

Ре­ши­те не­ра­вен­ство | минус x|\geqslant5.

1) x при­над­ле­жит левая квад­рат­ная скоб­ка 5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2) x при­над­ле­жит левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 5 пра­вая квад­рат­ная скоб­ка
3) x при­над­ле­жит левая квад­рат­ная скоб­ка минус 5;5 пра­вая квад­рат­ная скоб­ка
4) x при­над­ле­жит левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 5 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
5) x_1= минус 5, x_2=5
8.  
i

За­пи­ши­те фор­му­лу n-го члена ариф­ме­ти­че­ской про­грес­сии (an), если даны ее пер­вые пять чле­нов: −10, −4, 2, 8, 14.

1) an = 6n − 16
2) an = −6n − 4
3) an = −14n + 4
4) an = 6n − 14
5) an = 6n + 16
9.  
i

Пло­щадь круга равна 81 Пи . Диа­метр этого круга равен:

1) 18
2) 18 Пи
3) 9
4) 9 Пи
5) 81
10.  
i

Зна­че­ние вы­ра­же­ния  ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 32 конец ар­гу­мен­та : ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 33 конец ар­гу­мен­та равно:

1)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 33 конец ар­гу­мен­та конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
3) 2
4)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 33 конец ар­гу­мен­та конец дроби
5)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 33 конец дроби
11.  
i

Даны два числа. Из­вест­но, что одно из них мень­ше дру­го­го на 6. Ка­ко­му усло­вию удо­вле­тво­ря­ет мень­шее число x, если его удво­ен­ный квад­рат не боль­ше суммы квад­ра­тов этих чисел?

1) x\le3
2) x\le минус 3
3) x\ge минус 3
4) x\ge3
5) x\le12
12.  
i

На одной чаше урав­но­ве­шен­ных весов лежат 3 яб­ло­ка и 1 груша, на дру­гой  — 2 яб­ло­ка, 2 груши и гирь­ка весом 20 г. Каков вес од­но­го яб­ло­ка (в грам­мах), если все фрук­ты вме­сте весят 780 г? Счи­тай­те все яб­ло­ки оди­на­ко­вы­ми по весу и все груши оди­на­ко­вы­ми по весу.

1) 95
2) 105
3) 100
4) 125
5) 115
13.  
i

Зна­че­ние вы­ра­же­ния НОК(18, 20, 45) + НОД(30, 42) равно:

1) 211
2) 186
3) 125
4) 181
5) 216
14.  
i

Из­вест­но, что наи­мень­шее зна­че­ние функ­ции, за­дан­ной фор­му­лой y  =  x2 + 8x + c, равно −5. Тогда зна­че­ние c равно:

1) 16
2) 11
3) 21
4) −21
5) −53
15.  
i

Най­ди­те сумму целых ре­ше­ний не­ра­вен­ства 3 левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка боль­ше левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка в квад­ра­те .

1) 13
2) 9
3) -13
4) 26
5) -9
16.  
i

Рас­по­ло­жи­те числа 8 в сте­пе­ни левая круг­лая скоб­ка 10 пра­вая круг­лая скоб­ка , 3 в сте­пе­ни левая круг­лая скоб­ка 18 пра­вая круг­лая скоб­ка , 31 в сте­пе­ни 6 в по­ряд­ке воз­рас­та­ния.

1) 3 в сте­пе­ни левая круг­лая скоб­ка 18 пра­вая круг­лая скоб­ка , 8 в сте­пе­ни левая круг­лая скоб­ка 10 пра­вая круг­лая скоб­ка , 31 в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка
2) 8 в сте­пе­ни левая круг­лая скоб­ка 10 пра­вая круг­лая скоб­ка , 3 в сте­пе­ни левая круг­лая скоб­ка 18 пра­вая круг­лая скоб­ка , 31 в сте­пе­ни 6
3) 31 в сте­пе­ни 6 , 3 в сте­пе­ни левая круг­лая скоб­ка 18 пра­вая круг­лая скоб­ка , 8 в сте­пе­ни левая круг­лая скоб­ка 10 пра­вая круг­лая скоб­ка
4) 3 в сте­пе­ни левая круг­лая скоб­ка 18 пра­вая круг­лая скоб­ка , 31 в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , 8 в сте­пе­ни левая круг­лая скоб­ка 10 пра­вая круг­лая скоб­ка
5) 31 в сте­пе­ни 6 , 8 в сте­пе­ни левая круг­лая скоб­ка 10 пра­вая круг­лая скоб­ка , 3 в сте­пе­ни левая круг­лая скоб­ка 18 пра­вая круг­лая скоб­ка
17.  
i

Через вер­ши­ну A пря­мо­уголь­но­го тре­уголь­ни­ка ABC (∠C  =  90°) про­ве­ден пер­пен­ди­ку­ляр AK к его плос­ко­сти. Най­ди­те рас­сто­я­ние от точки K до пря­мой BC, если AK  =  2, AB  =  4, BC  =   ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та .

1) 3
2) 2 ко­рень из 5
3)  ко­рень из 5
4)  ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та
5) 6
18.  
i

Наи­мень­шее целое ре­ше­ние не­ра­вен­ства \lg левая круг­лая скоб­ка x в квад­ра­те минус 2x минус 8 пра­вая круг­лая скоб­ка минус \lg левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка \leqslant\lg4 равно:

1) −3
2) −2
3) 4
4) 5
5) 8
19.  
i

Для на­ча­ла каж­до­го из пред­ло­же­ний A−В под­бе­ри­те его окон­ча­ние 1−6 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

 

НА­ЧА­ЛО ПРЕД­ЛО­ЖЕ­НИЯ

A)  Окруж­ность с цен­тром в точке (−8; −2) и ра­ди­у­сом 4 за­да­ет­ся урав­не­ни­ем:

Б)  Урав­не­ни­ем пря­мой, про­хо­дя­щей через точку (−8; 2) и па­рал­лель­ной пря­мой y= дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби x, имеет вид:

В)  Гра­фик об­рат­ной про­пор­ци­о­наль­но­сти, про­хо­дя­щий через точку  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , за­да­ет­ся урав­не­ни­ем:

ОКОН­ЧА­НИЕ ПРЕД­ЛО­ЖЕ­НИЯ

1)  xy=2

2)   левая круг­лая скоб­ка x минус 8 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y минус 2 пра­вая круг­лая скоб­ка в квад­ра­те =4

3)   минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби x плюс y=4

4)   левая круг­лая скоб­ка x плюс 8 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те =16

5)  4xy плюс 1=0

6)   дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби x плюс y=2

 

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.

20.  
i

Внут­рен­ний угол пра­виль­но­го мно­го­уголь­ни­ка равен 135°. Вы­бе­ри­те все вер­ные утвер­жде­ния для дан­но­го мно­го­уголь­ни­ка.

1.  Мно­го­уголь­ник яв­ля­ет­ся вось­ми­уголь­ни­ком.

2.  В мно­го­уголь­ни­ке 40 диа­го­на­лей.

3.  Если сто­ро­на мно­го­уголь­ни­ка равна 2, то ра­ди­ус впи­сан­ной окруж­но­сти равен 1 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та .

4.  Пло­щадь мно­го­уголь­ни­ка со сто­ро­ной a можно вы­чис­лить по фор­му­ле S=2 левая круг­лая скоб­ка 1 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка a в квад­ра­те .

 

Ответ за­пи­ши­те в виде по­сле­до­ва­тель­но­сти цифр в по­ряд­ке воз­рас­та­ния. На­при­мер: 123.

21.  
i

В рав­но­бед­рен­ную тра­пе­цию, пло­щадь ко­то­рой равна  целая часть: 36, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 8 , впи­са­на окруж­ность. Сумма двух углов тра­пе­ции равна 60°. Най­ди­те пе­ри­метр тра­пе­ции.

22.  
i

Най­ди­те про­из­ве­де­ние кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния x в квад­ра­те минус 5x минус 3=4 ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 5x плюс 9. конец ар­гу­мен­та

23.  
i

Най­ди­те сумму (в гра­ду­сах) наи­мень­ше­го по­ло­жи­тель­но­го и наи­боль­ше­го от­ри­ца­тель­но­го кор­ней урав­не­ния  синус 4x минус ко­рень из 3 ко­си­нус 2x=0.

24.  
i

Три числа со­став­ля­ют гео­мет­ри­че­скую про­грес­сию, в ко­то­рой q боль­ше 1. Если вто­рой член про­грес­сии умень­шить на 8, то по­лу­чен­ные три числа в том же по­ряд­ке опять со­ста­вят гео­мет­ри­че­скую про­грес­сию. Если тре­тий член новой про­грес­сии умень­шить на 25, то по­лу­чен­ные числа со­ста­вят ариф­ме­ти­че­скую про­грес­сию. Най­ди­те сумму ис­ход­ных чисел.

25.  
i

Най­ди­те сумму целых ре­ше­ний не­ра­вен­ства  дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка в кубе минус 5x левая круг­лая скоб­ка x в квад­ра­те минус 12x плюс 36 пра­вая круг­лая скоб­ка , зна­ме­на­тель: x минус 4 конец дроби \geqslant0.

26.  
i

Най­ди­те сумму наи­мень­ше­го и наи­боль­ше­го целых ре­ше­ний не­ра­вен­ства  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 15 конец дроби пра­вая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 ло­га­рифм по ос­но­ва­нию 9 левая круг­лая скоб­ка x плюс 15 пра­вая круг­лая скоб­ка боль­ше 0.

27.  
i

В ариф­ме­ти­че­ской про­грес­сии 130 чле­нов, их сумма равна 130, а сумма чле­нов с чет­ны­ми но­ме­ра­ми на 130 боль­ше суммы чле­нов с не­чет­ны­ми но­ме­ра­ми. Най­ди­те сотый член этой про­грес­сии.

28.  
i

Най­ди­те про­из­ве­де­ние наи­боль­ше­го це­ло­го ре­ше­ния на ко­ли­че­ство целых ре­ше­ний не­ра­вен­ства  дробь: чис­ли­тель: 16, зна­ме­на­тель: 6 плюс |24 минус x| конец дроби боль­ше |24 минус x|.

29.  
i

Из двух рас­тво­ров с раз­лич­ным про­цент­ным со­дер­жа­ни­ем спир­та мас­сой 100 г и 900 г от­ли­ли по оди­на­ко­во­му ко­ли­че­ству рас­тво­ра. Каж­дый из от­ли­тых рас­тво­ров до­ли­ли в оста­ток дру­го­го рас­тво­ра, после чего про­цент­ное со­дер­жа­ние спир­та в обоих рас­тво­рах стало оди­на­ко­вым. Най­ди­те, сколь­ко рас­тво­ра (в грам­мах) было от­ли­то из каж­до­го рас­тво­ра.

30.  
i

Трое ра­бо­чих (не все оди­на­ко­вой ква­ли­фи­ка­ции) вы­пол­ни­ли не­ко­то­рую ра­бо­ту, ра­бо­тая по­оче­ред­но. Сна­ча­ла пер­вый из них про­ра­бо­тал  дробь: чис­ли­тель: 1, зна­ме­на­тель: 12 конец дроби часть вре­ме­ни, не­об­хо­ди­мо­го двум дру­гим для вы­пол­не­ния всей ра­бо­ты. Затем вто­рой про­ра­бо­тал  дробь: чис­ли­тель: 1, зна­ме­на­тель: 12 конец дроби часть вре­ме­ни, не­об­хо­ди­мо­го двум дру­гим для вы­пол­не­ния всей ра­бо­ты. И, на­ко­нец, тре­тий про­ра­бо­тал  дробь: чис­ли­тель: 1, зна­ме­на­тель: 12 конец дроби часть вре­ме­ни, не­об­хо­ди­мо­го двум дру­гим для вы­пол­не­ния всей ра­бо­ты. Во сколь­ко раз быст­рее ра­бо­та была бы вы­пол­не­на, если бы трое ра­бо­чих ра­бо­та­ли од­но­вре­мен­но? В ответ за­пи­ши­те най­ден­ное число, умно­жен­ное на 4.

31.  
i

Петя за­пи­сал на доске два раз­лич­ных на­ту­раль­ных числа. Затем он их сло­жил, пе­ре­мно­жил, вычел из боль­ше­го за­пи­сан­но­го числа мень­шее и раз­де­лил боль­шее на мень­шее. Сло­жив че­ты­ре по­лу­чен­ных ре­зуль­та­та, Петя по­лу­чил число 1521. Най­ди­те все такие пары на­ту­раль­ных чисел. В ответ за­пи­ши­те их сумму.

32.  
i

Ос­но­ва­ни­ем пи­ра­ми­ды SABCD яв­ля­ет­ся вы­пук­лый че­ты­рех­уголь­ник ABCD, диа­го­на­ли АС и BD ко­то­ро­го пер­пен­ди­ку­ляр­ны и пе­ре­се­ка­ют­ся в точке O, АО  =  9, ОС  =  16, ВО  =  OD  =  12. Вер­ши­на S пи­ра­ми­ды SABCD уда­ле­на на рас­сто­я­ние  дробь: чис­ли­тель: 61, зна­ме­на­тель: 7 конец дроби от каж­дой из пря­мых AB, BC, СD и AD. Через се­ре­ди­ну вы­со­ты пи­ра­ми­ды SABCD па­рал­лель­но ее ос­но­ва­нию про­ве­де­на се­ку­щая плос­кость, ко­то­рая делит пи­ра­ми­ду на две части. Най­ди­те зна­че­ние вы­ра­же­ния 10 · V, где V  — объем боль­шей из ча­стей.